OpenRoads Designer Superelevation Rule File Guide

Document Revision #1

Revision History

#	Date	Ву	Description	Approved
0	4/25/2018	Dan Ahern	Original document	
1	12/2/2018	Dan Ahern	Add / Update content	

Contents

OpenRoads Designer Rule File	4
Importing SUP Files into OpenRoads Designer	4
Importing SEP Files into OpenRoads Designer	4
SEP Variable Mapping to OpenRoads Designer Settings	9
E Rate	9
Runoff	9
Tangent Runout	10
Adjustment Factors	11
Distribution	11
Rotation	12
Reverse Curves	12
Compound Curves	14
Short Curves	15

OpenRoads Designer Rule File

The OpenRoads Designer Rule file defines how superelevation rates and transitions are computed for each curve of an alignment. The rule file replaces SUP and SEP definitions used in legacy software applications. This document describes how to import data from existing SUP and SEP files and provide guidance how to set the options in the OpenRoads Designer Rules to achieve the same result as settings in the SEP file.

Full documentation of the OpenRoads Designer Rule is included in the software help. Search for the section named **Edit Superelevation Rule File**.

Importing SUP Files into OpenRoads Designer

- 1) Open software using any DGN.
- 2) Select Corridors > Superelevation > Calculate > Edit Superelevation Rule File

 a) The dialog opens with default AASHTO equations already defined.
- 3) Select Import > SEP File and import the V8i SEP file.
- 4) Review the imported eRates and Transitions on the respective tabs.
- 5) All of the other settings in the XML file are defined manually, the SUP file does not include any of these settings.

Importing SEP Files into OpenRoads Designer

The following setting from SEP files may require custom key stations or custom equations be defined to achieve the desired results.

- Nominal lane width
- Rounding
- Adjustment factors
- Different distribution methods
- 6) Open software using any DGN.
- 7) Select Corridors > Superelevation > Calculate > Edit Superelevation Rule File
- a) The dialog opens with default AASHTO equations already defined.
- 8) Select Import > SEP File and import the V8i SEP file.
- 9) Review the imported eRates and Transitions on the respective tabs.
 - a) eRate tables and/or equations are imported based on the definition of the *eMethod* variable in the SEP file.

E_RADIUS_TABLE	tables defined by the eTableName variable are automatically
	imported.
AASHTO Method 5	equation is already defined in the XML rule file.
EQUATION	equations defined by the <i>eEquation</i> variable are not imported. They
	must be defined manually using Equations > Rate Equations > New .

b) Transition tables and/or equations are imported based on the *runoffLengthMethod* variable in the SEP file.

RUNOFF_EQUATION	equations defined by the <i>runoffLengthEquation</i> variable are not imported. They must be defined manually using Equations > Rate Equations > New .
RUNOFF_E_TABLE	tables defined by the <i>lengthTableName</i> variable are automatically imported but they are not visible through the dialog box.
RUNOFF_RELATIVE_GRADIENT_TABLE	relative gradient equation is created. The gradient table defined in the SEP file is imported into the gradient equation variable.

- c) Delete the following two default equations if they are not wanted in the superelevation setup.
 - i) Equations > Rate Equations > AASHTO Method 5
 - ii) Equations > Transition Equations > AASHTO

🔢 Create / Edit Superelevation	Rules File (Untitled.xml)		-		\times
File Import					
General	Rate Equations				
Tables	AASHTO Method 5				\sim
Equations		New	Edit	Delete	
Runout and Transition Options					
Curve Overlap Adjustments	Transition Equations				
Custom Key Stations	AASHTO				\sim
Runtime Variables		Now	Edit	Delate	_
		IVEW	Cult	Delete	

10) Set the General Settings

- a) Select General tab
- b) Set **Station Rounding** = 0 or as defined by *RunoffLengthRoundingIncrement in the SEP file*.
- c) Set **Cross Slope Rounding** = 0.01 or as defined by *eRoundingIncrement in the SEP file*.
- d) Set **Creation by Corridor Settings** as desired. The settings define the default methods that are used when creating superelevation with the *Create Superelevation Sections* tool by selecting a corridor. These default methods are automatically used, and the user is not prompted for any selections when using this workflow.
- 11) Set the Runout and Transition Options
 - a) Set the transition runout option(s) based on the definition of the *tangentRunoutLengthMethod* variable in the SEP file.

TANGENT_RUNOUT_RELATIVE_GRADIENT_RUNOFF	disable Fixed Length
TR_FIXED_LENGTH	enable Fixed Length and set the Length value to the value defined by the <i>fixedLength</i> variable in the SEP file.
TANGENT_RUNOUT_EQUATION	use Custom Key Stations to define an equation that computes the Normal Crown point. The existing equation is defined by <i>trEquation</i> .

- b) Set **Transition Type** as defined by the *lengthSpeedInterpolation* variable in the SEP file.
- c) Set **Percent on Tangent** as defined by the *undividedPercentOnTangent*, *dividedHighPercentOnTangent*, *or dividedLowPercentOnTangent* variables in the SEP file.
- d) Set the spiral transition length options based on the definition of the *runoffSpiralOption* variable in the SEP file.

LS_RUNOFF_ONLY	enable Use Spiral Length
LS_RUNOFF_AND_RUNOUT	enable Use Spiral Length and Lengths are Total Transition
	GEOPAK allowed the Runout distribution method to be
	defined independently when spirals are and are not present.
	In addition, when spirals are not present there are separate
	definitions for undivided and divided roadways. The Lengths
	are Total Transition length definition applies to all geometric
	conditions. If separate distributions are needed for different
	geometric conditions, use Custom Key Stations.

e) Set how lanes are rotated (planar or non-planar) as defined by the *outsideLaneRotationMethod* variable in the SEP file.

ROTATE_TO_MATCH_INSIDE_LANE	disable Start Inside Lane Rotation With Outside
INDEPENDENT_ROTATION	enable Start Inside Lane Rotation With Outside

f) Set how Runoff lengths are distributed as defined by the *undividedDistributeOver* variable in the SEP file.

DISTRIBUTION_RUNOFF_ONLY	disable Lengths are Total Transition
DISTRIBUTION_RUNOFF_PLUS_RUNOUT	enable Lengths are Total Transition

g) Set how the eRate and Transition tables defined on the Tables tab are interpolated as defined by the *eInterpolation* variable in the SEP file. If *eInterpolation* is set to any value, enable **Interpolate Tables**. Otherwise, leave this option disabled.

This setting does not affect interpolation of tables embedded in equations, those tables have their own interpolation settings defined with each table.

- 12) Set the Curve Overlap Adjustments for adjacent curves in the same direction.
 - a) Set the *Curve Type* to **Curve Curve**.
 - b) Set the *Adjustment Types* based on the definitions of the *BB_minimumNormalCrownTreatment* variable in the SEP file.

HOLD_FSS_CHANGE_RG	enable Shorten and set the Minimum Transition Gap to the value to the value defined by
	RC_minimumNormalCrownLength. The runoff length is
	shortened for each curve proportional to the to the two
	transition lengths.
HOLD_RG_SLIDE_STATIONS	enable Slide and set the Minimum Transition Gap to the value
	to the value defined by <i>RC_ minimumNormalCrownLength</i> . The runoff length is slid for each curve proportional to the to the
	two transition lengths.
LOWER_E_TO_RC	enable Reverse Crown and set the Minimum Transition Gap to
	the value to the value defined by
	BB_minimumReverseCrownLength. There are no adjustments

to the Full Super and Reverse Crown points. The Zero Crown
and Normal Crown points are deleted, and the slope holds at a
constant rate between the Reverse Crown points.

13) Set the Curve Overlap Adjustments for reverse curves.

- a) Set the *Curve Type* to **Reverse Curve**.
- b) Set the *Adjustment Types* based on the definitions of the *RC_criticalTreatment* variable in the SEP file.

HOLD_FSS_CHANGE_RG	enable Shorten and set the Minimum Transition Gap to the
	value to the value defined by
	RC_criticalMinimumNormalCrownLength. The runoff length is
	shortened for each curve proportional to the to the two
	transition lengths. This is roughly equivalent to the
	RC_criticalLengthDistribution variable being set to BY_E.
HOLD_RG_SLIDE_STATIONS	enable Slide and set the Minimum Transition Gap to the value
	to the value defined by
	RC_criticalMinimumNormalCrownLength. The runoff length is
	slid for each curve proportional to the to the two transition
	lengths. This is roughly equivalent to the
	RC_criticalLengthDistribution variable being set to BY_E.

a) Set the *Adjustment Types* based on the definitions of the *RC_supercriticalTreatment* variable in the SEP file.

COMBINE_TRANSITIONS_HOLD_FSS	enable Planar and set the Minimum Transition Gap to
	the value to the value defined by
	<i>RC_supercriticalLength</i> . The transition is linear from full
	super to full super. The reverse crown and zero cross
	slope points are adjusted to be a on the linear
	transition. This is equal to the
	RC_supercriticalZeroPercentPositioning variable being
	set to BY_E and the RC_supercriticalRelativeGradient
	variable being set to UNADJUSTED_FSS_FSS.

SEP Variable Mapping to OpenRoads Designer Settings

E Rate

eMethod	E_RADIUS_TABLE	Tables defined by the eTableName variable are imported into the XML rule file. Rates can be "NC", "RC", or a % as in "4%"
	AASHTO Method 5	Equation is already defined in the XML rule file.
	EQUATION	Equations are not automatically imported into the XML rule file. They must be defined manually using Equations > Rate Equations > New . The existing equation is defined by the eEquation variable in the SEP file.
eSpeedInterpolation	The XML rule file only supports a single True/False switch for Table calculations. This is defined by the Runout and Transition Options > Interpolate Tables option. When enabled, all tables are interpolated, when disabled, eRate and Transition lengths will be the higher value. Additional interpolation methods can be achieved if necessary using Custom Key Station equations.	
radiusInterpolation	See eSpeedInterpolation.	
eRoundingIncrement	Defined by the General file.	> Cross Slope Rounding value in the XML rule

Runoff

RunoffSpiralOption	LS_RUNOFF_ONLY	Enable Runout and Transition Options > Use Spiral Length.
	LS_RUNOFF_AND_RUNOUT	Enable Runout and Transition Options > Use Spiral Length and Runout and Transition Options > Lengths are Total Transition. See undividedDistributeOver for
runoffLengthMethod	RUNOFF_EQUATION	Define with Equations > Rate Equations > New . The existing equation is defined by the runoffLengthEquation variable. Equations are not automatically imported into the XML rule file. They must be defined manually.
	RUNOFF_E_TABLE	Tables defined by the lengthTableName variable should automatically imported into the XML rule file.

	RUNOFF_RELATIVE_GRADIENT_TABLE	Imports into an
		equation. In current
		build the imported
		equation and tables
		overwrite the built in
		AASHTO transition
		equation. This can be
		renamed if desired. Also,
		the built in AASHTO
		transition equation must
		exist or the relative
		gradient tables will not
		import. In future
		versions transition tables
		will get imported into a
		new equation named
		Relative Gradient.
lengthSpeedInterpolation	See eSpeedInterpolation.	
eInterpolation	See eSpeedInterpolation.	
RunoffLengthRoundingIncrement	The XML rule files only supports rounding	ng of calculated stations
	with the General > Station Rounding va	lue. Specific rounding of
	Runoff, Runout, or Total Transition Leng	th can be done with
	equations or Custom Key Stations.	
TotalLengthRoundingIncrement	See RunoffLengthRoundingIncrement.	
nominalLaneWidth	Not directly supported in the XML rule f	ile. Separate tables for 1
	lane, 2 lanes, etc. can optionally be defi	ned for tabular based
	transition length calculations. When the	e superelevation is
	calculated the actual number of superel	evation lanes that exist
	determines which table (if multi-lane ta	bles exist) is used to read
	the transition length. Actual lane widths	and user defined
	Nominal lane widths can be used in equ	ation transition length
	calculations. Nominal lane widths are de	efined as a variable or
	Runtime Variable.	
halfLaneWidthThreshold	See nominalLaneWidth.	
widthBasis	See nominalLaneWidth.	

Tangent Runout

tangentRunoutLengthMethod	TANGENT_RUNOUT_RELATIVE	Disable Runout and Transition
	_GRADIENT_RUNOFF	Options > Fixed Length .
	TR_FIXED_LENGTH	Enable Runout and Transition
		Options > Fixed Length and set
		the Length value to the value
		defined by fixedLength.
	TANGENT_RUNOUT_EQUATION	Use Custom Key Stations to
		define an equation that
		computes the Normal Crown

		point. The existing equation is defined by trEquation.
totalLengthRoundingIncrement	See RunoffLengthRoundingIncrement	

Adjustment Factors

Adjustment factors are not directly supported in the XML rule file. The XML rule file is designed to use separate tables that included adjusted lengths for 1 lane, 2 lanes, etc. for tabular based transition length calculations. When the superelevation is calculated the actual number of superelevation lanes that exist determines which table (if multi-lane tables exist) is used to read the transition length. Transition lengths calculated based on relative gradient tables are automatically adjusted for multiple lanes using the equation defined in the AASHTO Policy on Geometric Design of Highways and Streets (Green Book). Additionally, custom equation can be setup for other adjustment methods including replicating the adjustment factor process used in GEOPAK.

Distribution

undividedDistributeOver	DISTRIBUTION_RUNOFF_ONLY	Disable Runout and
		Transition Options >
		Lengths are Total
		Transition.
	DISTRIBUTION_RUNOFF_PLUS_RUNOUT	Enable Runout and
		Transition Options >
		Lengths are Total
		Transition.
	Note – GEOPAK allowed the Runout distril	bution method to be
	defined independently when spirals are ar	nd are not present. In
	addition, when spirals are not present GEC	OPAK allowed separate
	definitions for undivided and divided road	ways. The Lengths are
	Total Transition definition applies to all ge	eometric conditions. If
	separate distributions are needed for diffe	erent geometric
	conditions, custom key stations or equation	ons will be required.
undividedPercentOnTangent	Set the Runout and Transition Options > I	Percent on Tangent
	value to the value defined by undividedPe	rcentOnTangent.
dividedHighDistributeOver	See undividedDistributeOver for additiona	l details.
dividedHighPercentOnTangent	set the Runout and Transition Options > I	Percent on Tangent
	value to the value defined by dividedHight	PercentOnTangent.
dividedLowMatchOption	DISTRIBUTION_MATCH_HIGH_SIDE	Not directly
		supported in the
		XML rule file.
		Custom Key
		Stations or
		custom
		equations can
		be setup to
		compute

		alternate
		transition
		distributions.
	DISTRIBUTION_DISTRIBUTE_INDEPENDENTLY	Default
		behavior, no
		settings
		required.
dividedLowPercentOnTangent	Set the Runout and Transition Options > Perce	nt on Tangent
	value to the value defined by dividedLowPercer	ntOnTangent.
stationRoundingIncrementMethod	See RunoffLengthRoundingIncrement.	
stationRoundingIncrement	See RunoffLengthRoundingIncrement.	

Rotation

elevationTransition	Define Runout and Transition Options > Transition Type as either	
	Linear or one of the Parabolic options.	
elevationTransitionBy	SLOPE	This is the default method used
		by OpenRoads Designer.
	ELEVATION	Not directly supported in the
		XML rule file. Custom Key
		Stations or custom equations
		can be setup to compute
		alternate transition
		distributions.
outsideLaneRotationMethod	ROTATE_TO_MATCH_INSIDE_LANE	Disable Runout and Transition
		Options > Start Inside Lane
		Rotation with Outside.
	INDEPENDENT_ROTATION	Enable Runout and Transition
		Options > Start Inside Lane
		Rotation with Outside.
axisOfRotation	This is not defined in the XML rule file. Instead, select the appropriatePivot Method when running the Calculate Superelevation tool.Available Pivot methods include Crown, Inside Edge, Outside Edge,	
	Left Edge, Right Edge, Divided Inside. Centerline.	

Reverse Curves

RC_criticalMinimumNormalCrow nLength	See RC_criticalTreatment.	
RC_criticalTreatment	HOLD_FSS_CHANGE_RG	Enable Curve Overlap Adjustments > Reverse Curve > Shorten and set the Minimum Transition Gap to the value to the value defined by

		RC criticalMinimumNormalCrow
		shortened for each curve
		proportional to the to the two
		transition lengths. This is roughly
		equivalent to the
		RC criticalLengthDistribution
		variable being set to BY_E.
	HOLD_RG_SLIDE_STATIONS	Enable Curve Overlap
		Adjustments > Reverse Curve >
		Slide and set the Minimum
		Transition Gap to the value to
		the value defined by
		RC_criticalMinimumNormalCrow
		nLength. The runoff length is slid
		for each curve proportional to
		the to the two transition
		lengths. This is roughly
		equivalent to the
		RC_criticalLengthDistribution
		variable being set to BY_E.
RC_criticalLengthDistribution	See RC_criticalTreatment for th	e default behavior. If behavior like
	one of the other GEOPAK meth	ods is required, a custom overlap
	adjustment can be defined.	
RC_supercriticalLength	See RC_supercriticalTreatment.	
RC_supercriticalTreatment	COMBINE TRANSITIONS HOL	
		Enable Curve Overlap
	D_FSS	Enable Curve Overlap Adjustments > Reverse Curve >
	D_FSS	Enable Curve Overlap Adjustments > Reverse Curve > Planar and set the Minimum
	D_FSS	Enable Curve Overlap Adjustments > Reverse Curve > Planar and set the Minimum Transition Gap to the value to
	D_FSS	Enable Curve Overlap Adjustments > Reverse Curve > Planar and set the Minimum Transition Gap to the value to the value defined by
	D_FSS	Enable Curve Overlap Adjustments > Reverse Curve > Planar and set the Minimum Transition Gap to the value to the value defined by RC_supercriticalLength. The
	D_FSS	Enable Curve Overlap Adjustments > Reverse Curve > Planar and set the Minimum Transition Gap to the value to the value defined by RC_supercriticalLength. The transition is linear from full super
	D_FSS	Enable Curve Overlap Adjustments > Reverse Curve > Planar and set the Minimum Transition Gap to the value to the value defined by RC_supercriticalLength. The transition is linear from full super to full super. The reverse crown
	D_FSS	Enable Curve Overlap Adjustments > Reverse Curve > Planar and set the Minimum Transition Gap to the value to the value defined by RC_supercriticalLength. The transition is linear from full super to full super. The reverse crown and zero cross slope points are
	D_FSS	Enable Curve Overlap Adjustments > Reverse Curve > Planar and set the Minimum Transition Gap to the value to the value defined by RC_supercriticalLength. The transition is linear from full super to full super. The reverse crown and zero cross slope points are adjusted to be a on the linear
	D_FSS	Enable Curve Overlap Adjustments > Reverse Curve > Planar and set the Minimum Transition Gap to the value to the value defined by RC_supercriticalLength. The transition is linear from full super to full super. The reverse crown and zero cross slope points are adjusted to be a on the linear transition. This is equal to the
	D_FSS	Enable Curve Overlap Adjustments > Reverse Curve > Planar and set the Minimum Transition Gap to the value to the value defined by RC_supercriticalLength. The transition is linear from full super to full super. The reverse crown and zero cross slope points are adjusted to be a on the linear transition. This is equal to the RC_supercriticalZeroPercentPosit
	D_FSS	Enable Curve Overlap Adjustments > Reverse Curve > Planar and set the Minimum Transition Gap to the value to the value defined by RC_supercriticalLength. The transition is linear from full super to full super. The reverse crown and zero cross slope points are adjusted to be a on the linear transition. This is equal to the RC_supercriticalZeroPercentPosit ioning variable being set to BY_E
	D_FSS	Enable Curve Overlap Adjustments > Reverse Curve > Planar and set the Minimum Transition Gap to the value to the value defined by RC_supercriticalLength. The transition is linear from full super to full super. The reverse crown and zero cross slope points are adjusted to be a on the linear transition. This is equal to the RC_supercriticalZeroPercentPosit ioning variable being set to BY_E and the
	D_FSS	Enable Curve Overlap Adjustments > Reverse Curve > Planar and set the Minimum Transition Gap to the value to the value defined by RC_supercriticalLength. The transition is linear from full super to full super. The reverse crown and zero cross slope points are adjusted to be a on the linear transition. This is equal to the RC_supercriticalZeroPercentPosit ioning variable being set to BY_E and the RC_supercriticalRelativeGradient
	D_FSS	Enable Curve Overlap Adjustments > Reverse Curve > Planar and set the Minimum Transition Gap to the value to the value defined by RC_supercriticalLength. The transition is linear from full super to full super. The reverse crown and zero cross slope points are adjusted to be a on the linear transition. This is equal to the RC_supercriticalZeroPercentPosit ioning variable being set to BY_E and the RC_supercriticalRelativeGradient variable being set to
	D_FSS	Enable Curve Overlap Adjustments > Reverse Curve > Planar and set the Minimum Transition Gap to the value to the value defined by RC_supercriticalLength. The transition is linear from full super to full super. The reverse crown and zero cross slope points are adjusted to be a on the linear transition. This is equal to the RC_supercriticalZeroPercentPosit ioning variable being set to BY_E and the RC_supercriticalRelativeGradient variable being set to UNADJUSTED_FSS_FSS.
	DISTINCT_TRANSITIONS_HOL	Enable Curve Overlap Adjustments > Reverse Curve > Planar and set the Minimum Transition Gap to the value to the value defined by RC_supercriticalLength. The transition is linear from full super to full super. The reverse crown and zero cross slope points are adjusted to be a on the linear transition. This is equal to the RC_supercriticalZeroPercentPosit ioning variable being set to BY_E and the RC_supercriticalRelativeGradient variable being set to UNADJUSTED_FSS_FSS. Requires defining a custom curve
	DISTINCT_TRANSITIONS_HOL D_FSS	Enable Curve Overlap Adjustments > Reverse Curve > Planar and set the Minimum Transition Gap to the value to the value defined by RC_supercriticalLength. The transition is linear from full super to full super. The reverse crown and zero cross slope points are adjusted to be a on the linear transition. This is equal to the RC_supercriticalZeroPercentPosit ioning variable being set to BY_E and the RC_supercriticalRelativeGradient variable being set to UNADJUSTED_FSS_FSS. Requires defining a custom curve overlap adjustment.
	DISTINCT_TRANSITIONS_HOL D_FSS DISTINCT_TRANSITIONS_HOL D_FSS DISTINCT_TRANSITIONS_HOL	Enable Curve Overlap Adjustments > Reverse Curve > Planar and set the Minimum Transition Gap to the value to the value defined by RC_supercriticalLength. The transition is linear from full super to full super. The reverse crown and zero cross slope points are adjusted to be a on the linear transition. This is equal to the RC_supercriticalZeroPercentPosit ioning variable being set to BY_E and the RC_supercriticalRelativeGradient variable being set to UNADJUSTED_FSS_FSS. Requires defining a custom curve overlap adjustment. Requires defining a custom curve

	COMBINE_TRANSITIONS_SPE	Requires defining a custom curve
	CIFY_RG	overlap adjustment.
RC_supercriticalZeroPercentPosi	See RC_supercriticalTreatment	for the default behavior. If
tioning	behavior like one of the other G	EOPAK methods is required, a
	custom overlap adjustment can	be defined.
RC_supercriticalRelativeGradient	See RC_supercriticalTreatment	for the default behavior. If
	behavior like one of the other GEOPAK methods is required, a	
	custom overlap adjustment can	be defined.

Compound Curves

CC_relativeGradient	This is handled automatically by OpenRoads Designer. The		
	relative gradient of the first curve is used to calculate the		
	transition length. This is different from any of the four		
	methods available in the SEP file. If behavior like one of the		
	other GEOPAK methods is r	equired, a custom overlap	
	adjustment can be defined.		
CC lengthDistributionAtPCC	The transition is distributed evenly across the PCC point. This		
	is roughly equivalent to the	variable being set to BY E. If	
	behavior like one of the oth	er GEOPAK methods is required, a	
	custom overlap adjustment	can be defined.	
CC byPercentageOnSharperCurve	See CC lengthDistributionAtPCC for the default behavior. The		
/ _ 0 _ 1	By Percentage on Sharper C	Curve method is not directly	
	supported by the XML Rule	file.	
BB minimumNormalCrownLength	See BB minimumNormalCrownTreatment.		
BB minimumNormalCrownTreatme	HOLD FSS CHANGE RG	Enable Curve Overlap	
nt		Adjustments > Curve Curve >	
		Shorten and set the Minimum	
		Transition Gap to the value to	
		the value defined by	
		RC_minimumNormalCrownLengt	
		h. The runoff length is shortened	
		for each curve proportional to	
		the to the two transition lengths.	
	HOLD_RG_SLIDE_STATIO	Enable Curve Overlap	
	NS	Adjustments > Curve Curve >	
		Slide and set the Minimum	
		Transition Gap to the value to	
		the value defined by RC_	
		minimumNormalCrownLength.	
		The runoff length is slid for each	
		curve proportional to the to the	
		two transition lengths.	
	LOWER_E_TO_RC	Enable Curve Overlap	
		Adjustments > Curve Curve >	
		Reverse Crown and set the	

		Minimum Transition Gap to the
		value to the value defined by
		BB_minimumReverseCrownLengt
		h. There are no adjustments to
		the Full Super and Reverse Crown
		points. The Zero Crown and
		Normal Crown points are
		deleted, and the slope holds at a
		constant rate between the
		Reverse Crown points.
BB_minimumReverseCrownLength	See BB_minimumReverseCrownTreatment.	
BB_minimumReverseCrownTreatme	The XML rule file does not support evaluating the distance	
nt	between Reverse Crown points, it only evaluates the distance	
	between Normal Crown points. If this method is required, a	
	custom overlap adjustment can be defined.	

Short Curves

minLength	See minLengthMethod.
minLengthMethod	Requires defining a custom curve overlap adjustment.